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As the temperature is raised abov200 K, hydrated proteins 20
. : . o A B C
undergo a change in dynamics, the so-called dynamical transition,
from glasslike, in which the motion is primarily vibrational, to
liquidlike, in which transitions between taxonomic substates are
possible. The increase in motion accompanying the transition has
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been observed by techniques that probe different parts of a protein Mean Squared Fluctuation 2

molecule over a wide range of time scales, includingsstzauer

spectroscop¥:3 X-ray crystallography,neutron scattering light Figure 1. Histograms of methyl proton mean-squared fluctuations in RNase
scattering, nuclear magnetic resonance (NMR) spectroscanyd frgvn\:dl(\eler simulations at 300 K: (A) solution, (B) crystal, (C) dehydrated
molecular dynamics (MD) simulatio¥$° Numerous studies have P '

demonstrated that the transition is dependent on solvent: in the as A B
absence of solvent it is suppressed, and as the solvent viscosity is e

increased, the transition temperature increases and the magnitude =

of nonharmonic motions is attenuate®’ However, it has recently . HWHTM‘; H_L_m_m

been argued that the transition can be predicted by extrapolating g o oen =

the highT motion (probed by NMR) of a subset of side chains to L 30 c D

low T, i.e., it does not involve a purely global transition in the 2

protein—solvent systerfi.The extent to which solvent affects protein I

dynamics has implications for fundamental studies aimed at s

elucidating the role of specific protein motions in protein function, © 08 06 08 12 15 180 03 06,99 12 15 18
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and practical applications to biopreservation by suppression of
protein function and degradation pathwadyswWe report the

temperature dependence of methyl group dynamics predicted by
MD simulations of a protein over a range of temperatures spanning

the dynamical transition, with and without aqueous solvent. Our K m_solutlon, in the crystal where t_he protein is well hydratt_ed,
results confirm that solvent is required for the dynamical transition 1d in @ dehydrated powder. In solution the MSFs span a relatively

and demonstrate that the transition is accompanied by an abrupt/Vid€ range, indicating a marked degree of dynamical heterogeneity,
increase in mobility throughout most of the protein. consistent with NMR. The MSF distribution in the hydrated crystal

The results were derived from 2-ns MD trajectories of the protein (Figure 1B) is qualitatively similar to the solution result, except
ribonuclease A (RNase) in a hydrated crystal (2 RNase moleculesfor,a slight shift to lower values. Dehy@ratlon results in a}qramatlc
plus 817 waters) and a dehydrated powder (8 RNase moledales), Shift of the MSFs to lower values (Figure 1C). Thus, it is clear
at 25 K increments from 100 to 300 K, and a single RNase molecule that water is required for the methy! groups to exhibit the full range
in solution (3453 waters) at 300 K. The structures of the protein of motion characteristic of the liquidlike protein state at room

molecules in the dehydrated powder differ only slightly from those €Mperature. ,
in the crystal (+1.5 A C* rmsd)12 The simulation protocols, In Figure 2, histograms of the methyl MSFs in the hydrated

described in detail elsewheke!2have produced both protein and crystal are plotted at several temperatures bracketing the dynamical
water dynamics in excellent agreement with neutron scattering data,fransition (-200 K). The methyl group quctuanps shift systgmaﬂ-
Methyl group dynamics were characterized in terms of mean- cally toward lower values as the temperature is lowered, i.e., the

squared fluctuations (MSFs) of H atoms, which are dominated by dynamics of most of the methyl groups exhibit a qualitatively

libration/rotation of C-H bond vectors. The MSFs are therefore similar temperature dependence. o
useful for discussing the motion probed by deuterium NMR The temperature dependence of the MSFs of individual methyl

relaxation data on labeled methyl groups and incoherent neutron90UPS in the hydrated RNase crystal and the dehydrated RNase
scattering data that are dominated by contributions from nonex- POWder is plotted in Figure 3. In the hydrated system, the MSFs

changeable H atoms. The MSFs were accumulated in blocks Ofgenerally increase linearly with below the dynamical transition

100 ps, which is intermediate between the time scales probed by!€Mperature of-200 K, and the majority show an abrupt increase
NMR relaxation in small proteins~L ns) and elastic neutron  With temperature above 200 K. In contrast, in the dehydrated
scattering €100 ps). system, the MSFs generally follow a roughly linear increase over

the entire temperature range (i.e. do not undergo a dynamical

Figure 2. Histograms of methyl proton mean-squared fluctuations in
hydrated RNase crystal: (A) 300 K, (B) 250 K, (C) 200 K, (D) 150 K.

Figure 1 displays histograms of methyl MSFs for RNase at 300

+National Institute of Standards and Technology. transition). Figure 3A shows that the dynamical transition, reported
T University of California, Irvine. by the methyl groups, occurs throughout the hydrated protein, at
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both the amplitudes and distribution of motion are influenced by
the solvent and is not exclusively an intrinsic property of the protein.
Thus, it is often said that protein motion is slave to solvent mdtion.
An alternative point of view is that solvent acts as a plasticizer
that allows the activation of protein motions by decreasing the local
viscosity of protein atom® The mechanism of plasticization
involves relaxation of the proteirsolvent hydrogen bond netwdpk

via solvent translational motiof§.
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